Real space renormalization group approach to spin-glass dynamics
نویسندگان
چکیده
منابع مشابه
Renormalization group approach to spin glass systems
A renormalization group transformation suitable for spin glass models and, more generally, for disordered models, is presented. The procedure is non-standard in both the nature of the additional interactions and the coarse graining transformation, that is performed on the overlap probability measure. Universality classes are thus naturally defined on a large set of models, going from Z 2 and Ga...
متن کاملTime-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملtime-dependent real-space renormalization group method
in this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent hamiltonians. we drive the time-dependent recursion relations for the renormalized tight-binding hamiltonian by decimating selective sites of lattice iteratively. the formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملReal-space renormalization-group approach to field evolution equations.
An operator formalism for the reduction of degrees of freedom in the evolution of discrete partial differential equations (PDE) via real-space renormalization group is introduced, in which cell overlapping is the key concept. Applications to (1+1)-dimensional PDEs are presented for linear and quadratic equations that are first order in time.
متن کاملA nonperturbative Real-Space Renormalization Group scheme
Based on the original idea of the density matrix renormalization group (DMRG) [1], i.e. to include the missing boundary conditions between adjacent blocks of the blocked quantum system, we present a rigorous and nonperturbative mathematical formulation for the realspace renormalization group (RG) idea invented by L.P. Kadanoff [2] and further developed by K.G. Wilson [3]. This is achieved by us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2003
ISSN: 0163-1829,1095-3795
DOI: 10.1103/physrevb.68.060404